699 lines
No EOL
19 KiB
C++
699 lines
No EOL
19 KiB
C++
#include <AccelStepper.h>
|
|
#include <SafeString.h>
|
|
#include <EEPROM.h>
|
|
#include <BufferedOutput.h>
|
|
#include <Servo.h>
|
|
#include "Stepper.cpp"
|
|
|
|
#define MotorInterfaceType 4
|
|
|
|
|
|
|
|
#define Z_STEP_PIN 4
|
|
#define Z_DIR_PIN 7
|
|
|
|
#define Z2_STEP_PIN 2
|
|
#define Z2_DIR_PIN 5
|
|
|
|
#define Y_STEP_PIN 3
|
|
#define Y_DIR_PIN 6
|
|
|
|
#define Y2_STEP_PIN 12
|
|
#define Y2_DIR_PIN 13
|
|
|
|
|
|
|
|
#define X_STEP_PIN 52
|
|
#define X_DIR_PIN 53
|
|
|
|
|
|
|
|
#define END_STEP_PIN 27
|
|
#define END_DIR_PIN 29
|
|
// #define END_STEP_PIN1 24
|
|
// #define END_STEP_PIN2 22
|
|
|
|
|
|
#define X_MIN_PIN 38
|
|
#define X_MAX_PIN 36
|
|
#define Y_MIN_PIN 44
|
|
#define Y_MAX_PIN 42
|
|
#define Z_MIN_PIN 46
|
|
#define Z_MAX_PIN 40
|
|
#define E_HOME_PIN 48
|
|
#define ELECTROMAGNET_RELAY_PIN 10
|
|
#define LATCH_PIN 11
|
|
|
|
//Mem addresses
|
|
#define EEPROM_X_MIN 0
|
|
#define EEPROM_X_MAX 4
|
|
#define EEPROM_Y_MIN 8
|
|
#define EEPROM_Y_MAX 12
|
|
#define EEPROM_Z_MIN 16
|
|
#define EEPROM_Z_MAX 20
|
|
#define EEPROM_E_MAX 24
|
|
#define EEPROM_CALIBRATED 28
|
|
#define EEPROM_X_CUR 32
|
|
#define EEPROM_Y_CUR 36
|
|
#define EEPROM_Z_CUR 40
|
|
|
|
|
|
createBufferedOutput(bufferedOut, 80, DROP_UNTIL_EMPTY);
|
|
|
|
// Global variables for axis limits and steps per CM
|
|
long xMinSteps, xMaxSteps, yMinSteps, yMaxSteps, zMinSteps, zMaxSteps, eMaxSteps;
|
|
float xStepsPerCM, yStepsPerCM, zStepsPerCM, eStepsPerIndex;
|
|
short EFFECTOR_INDEX = 0;
|
|
|
|
const short STEPS_PER_ROT = 200;
|
|
|
|
// consts
|
|
const float END_EFFECTOR_WIDTH_CM = 5.0;
|
|
const float HORIZONTAL_CARRAGE_WIDTH_CM = 5.6;
|
|
const float VERTICAL_CARRAGE_WIDTH_CM = 2.5;
|
|
const float STOPPER_WIDTH_CM = 1.0;
|
|
float X_TRAVEL_CM = 0.0;
|
|
float Y_TRAVEL_CM = 0.0;
|
|
float Z_TRAVEL_CM = 0.0;
|
|
const int CALIBRATION_STEP_SPEED = 1000;
|
|
const int MIN_DIR_SIGN = 1;
|
|
const int MAX_DIR_SIGN = -1;
|
|
const int EFFECTOR_COUNT = 6;
|
|
const int UNLATCH_ANGLE = 180;
|
|
const int LATCH_ANGLE = 110;
|
|
const float THREAD_ROTATIONS_PER_CM = 5.5;
|
|
//x ratio 20:35
|
|
//yz ration 20:60
|
|
//5.5 rotations per cm
|
|
|
|
|
|
Stepper stepperX(X_STEP_PIN, X_DIR_PIN, 23);
|
|
Stepper stepperY1(Y_STEP_PIN, Y_DIR_PIN);
|
|
Stepper stepperY2(Y2_STEP_PIN, Y2_DIR_PIN);
|
|
Stepper stepperZ1(Z_STEP_PIN, Z_DIR_PIN);
|
|
Stepper stepperZ2(Z2_STEP_PIN, Z2_DIR_PIN);
|
|
|
|
|
|
Stepper stepperEnd(END_STEP_PIN, END_DIR_PIN, 25);
|
|
|
|
Servo servo;
|
|
void setup() {
|
|
Serial.begin(115200);
|
|
Serial.println("Gantry System Initializing");
|
|
bufferedOut.connect(Serial);
|
|
servo.attach(LATCH_PIN);
|
|
servo.write(UNLATCH_ANGLE);
|
|
|
|
pinMode(X_MIN_PIN, INPUT_PULLUP);
|
|
pinMode(X_MAX_PIN, INPUT_PULLUP);
|
|
pinMode(Y_MIN_PIN, INPUT_PULLUP);
|
|
pinMode(Y_MAX_PIN, INPUT_PULLUP);
|
|
pinMode(Z_MIN_PIN, INPUT_PULLUP);
|
|
pinMode(Z_MAX_PIN, INPUT_PULLUP);
|
|
pinMode(E_HOME_PIN, INPUT_PULLUP);
|
|
|
|
// Set electromagnet relay pin as output and ensure it's off initially
|
|
pinMode(ELECTROMAGNET_RELAY_PIN, OUTPUT);
|
|
digitalWrite(ELECTROMAGNET_RELAY_PIN, LOW);
|
|
int initSpeed = 2000;
|
|
stepperX.init();
|
|
stepperX.setMaxSpeed(initSpeed);
|
|
stepperX.setSpeed(initSpeed);
|
|
stepperY1.init();
|
|
stepperY1.setMaxSpeed(initSpeed);
|
|
stepperY1.setSpeed(initSpeed);
|
|
stepperY2.init();
|
|
stepperY2.setMaxSpeed(initSpeed);
|
|
stepperY2.setSpeed(initSpeed);
|
|
stepperZ1.init();
|
|
stepperZ1.setMaxSpeed(initSpeed);
|
|
stepperZ1.setSpeed(initSpeed);
|
|
stepperZ2.init();
|
|
stepperZ2.setMaxSpeed(initSpeed);
|
|
stepperZ2.setSpeed(initSpeed);
|
|
|
|
stepperEnd.init();
|
|
stepperEnd.setMaxSpeed(initSpeed);
|
|
stepperEnd.setSpeed(initSpeed);
|
|
stepperEnd.setDirection(-1);
|
|
delay(5000);
|
|
//calibrate each time
|
|
// if (EEPROM.read(EEPROM_CALIBRATED) != 0xAA) {
|
|
Serial.println("Calibration needed. Starting");
|
|
calibrateAndHome();
|
|
// } else {
|
|
// Serial.println("Loading stored calibration data");
|
|
// loadCalibrationData();
|
|
// calculateStepsPerCM();
|
|
// calculateStepsPerIndex();
|
|
// Serial.println("Calibration data loaded successfully.");
|
|
// moveToCM(X_TRAVEL_CM / 2, 0, 0);
|
|
// }
|
|
|
|
Serial.println("Gantry System Ready!");
|
|
}
|
|
|
|
void loop() {
|
|
// stepperX.runSpeed();
|
|
// stepperY1.runSpeed();
|
|
// stepperY2.runSpeed();
|
|
// stepperZ1.runSpeed();
|
|
// stepperZ2.runSpeed();
|
|
|
|
// stepperEnd.run();
|
|
// stepperEnd.run();
|
|
// connectElectromagnet();
|
|
// delay(2000);
|
|
// disconnectElectromagnet();
|
|
// delay(2000);
|
|
|
|
// attachment/detachment sequences
|
|
// attachAtPosition(15.0, 10.0, 5.0); // Move to position and connect
|
|
// delay(3000);
|
|
// detachAndMove(5.0, 5.0, 12.0); // Disconnect and move away
|
|
// delay(3000);
|
|
|
|
// moveToCM(5.0, 3.0, 7.5);
|
|
// delay(2000);
|
|
// moveToHome();
|
|
// delay(2000);
|
|
// if (!stepperX.isRunning())
|
|
// stepperX.disableOutputs();
|
|
// else
|
|
// stepperX.enableOutputs();
|
|
// if (!stepperY1.isRunning())
|
|
// stepperY1.disableOutputs();
|
|
// else
|
|
// stepperY1.enableOutputs();
|
|
// if (!stepperY2.isRunning())
|
|
// stepperY2.disableOutputs();
|
|
// else
|
|
// stepperY2.enableOutputs();
|
|
// if (!stepperZ1.isRunning())
|
|
// stepperZ1.disableOutputs();
|
|
// else
|
|
// stepperZ1.enableOutputs();
|
|
// if (!stepperZ2.isRunning())
|
|
// stepperZ2.disableOutputs();
|
|
// else
|
|
// stepperZ2.enableOutputs();
|
|
// if (!stepperEnd.isRunning())
|
|
// stepperEnd.disableOutputs();
|
|
// else
|
|
// stepperEnd.enableOutputs();
|
|
|
|
}
|
|
|
|
void calibrateAndHome() {
|
|
Serial.println("Starting calibration");
|
|
|
|
|
|
calibrateEndEffectorCarousal();
|
|
delay(2500);
|
|
// moveEffectorIndex(1);
|
|
// delay(2500);
|
|
// moveEffectorIndex(2);
|
|
// delay(2500);
|
|
// moveEffectorIndex(3);
|
|
// delay(2500);
|
|
// moveEffectorIndex(4);
|
|
// delay(2500);
|
|
// moveEffectorIndex(5);
|
|
// delay(2500);
|
|
// moveEffectorIndex(2);
|
|
// delay(2500);
|
|
// moveEffectorIndex(0);
|
|
|
|
|
|
|
|
calibrateXaxis();
|
|
calculateStepsPerCM();
|
|
moveToXCM(X_TRAVEL_CM / 2);
|
|
|
|
calibrateZaxis();
|
|
calculateStepsPerCM();
|
|
moveToZCM(Z_TRAVEL_CM / 2);
|
|
delay(2500);
|
|
|
|
calibrateYaxis();
|
|
calculateStepsPerCM();
|
|
moveToYCM(Y_TRAVEL_CM / 2);
|
|
delay(2500);
|
|
|
|
|
|
saveCalibrationData();
|
|
float zCM = 0.0;
|
|
float yCM = 0.0;
|
|
float xCM = 0.0;
|
|
// moveToHome();
|
|
// Serial.println("Calibration complete");
|
|
getCurrentPositionCM(xCM, yCM, zCM);
|
|
Serial.print("CurrentX ");
|
|
Serial.print(xCM);
|
|
Serial.print(" CurrentY ");
|
|
Serial.print(yCM);
|
|
Serial.print(" CurrentZ ");
|
|
Serial.print(zCM);
|
|
// moveToCM(xCM / 2, yCM / 2, zCM / 2);
|
|
}
|
|
|
|
void calibrateEndEffectorCarousal(){
|
|
// Serial.println("Calibrating End Effector Carousal");
|
|
// stepperEnd.setPosition(0);
|
|
stepperEnd.move(-1200);
|
|
while (digitalRead(E_HOME_PIN) == HIGH) {
|
|
stepperEnd.run();
|
|
delay(15);
|
|
}
|
|
delay(500);
|
|
while (digitalRead(E_HOME_PIN) == LOW) {
|
|
stepperEnd.runSpeed();
|
|
delay(15);
|
|
}
|
|
delay(2500);
|
|
// stepperEnd.move(-20);
|
|
// Serial.println(digitalRead(E_HOME_PIN));
|
|
// Serial.println(abs(millis() - start));
|
|
// while (stepperEnd.run()) {
|
|
// stepperEnd.run();
|
|
// delay(15);
|
|
// }
|
|
// delay(2500);
|
|
// stepperEnd.move(15);
|
|
// while (stepperEnd.run()) {
|
|
// delay(15);
|
|
// }
|
|
// delay(2500);
|
|
// Serial.println(digitalRead(E_HOME_PIN));
|
|
long position = stepperEnd.currentPosition();
|
|
while (digitalRead(E_HOME_PIN) == HIGH) {
|
|
stepperEnd.move(-1 * CALIBRATION_STEP_SPEED);
|
|
stepperEnd.run();
|
|
delay(15);
|
|
}
|
|
eMaxSteps = stepperEnd.currentPosition()- position;
|
|
Serial.print("End Max: "); Serial.println(eMaxSteps);
|
|
// stepperEnd.setPosition(0);
|
|
calculateStepsPerIndex();
|
|
// stepperEnd.move(-1 * eMaxSteps);
|
|
}
|
|
void calibrateXaxis(){
|
|
Serial.println("Calibrating X axis");
|
|
while (digitalRead(X_MIN_PIN) == HIGH) {
|
|
stepperX.runSpeed();
|
|
}
|
|
// stepperX.setCurrentPos(0);
|
|
xMinSteps = stepperX.currentPosition();
|
|
Serial.print("X Min: "); Serial.println(xMinSteps);
|
|
delay(250);
|
|
stepperX.setDirection(-1);
|
|
|
|
|
|
while (digitalRead(X_MAX_PIN) == HIGH) {
|
|
stepperX.runSpeed();
|
|
}
|
|
stepperX.setDirection(1);
|
|
xMaxSteps = stepperX.currentPosition();
|
|
Serial.print("X Max: "); Serial.println(xMaxSteps);
|
|
}
|
|
void calibrateYaxis(){
|
|
Serial.println("Calibrating Y axis");
|
|
|
|
while (digitalRead(Y_MAX_PIN) == HIGH) {
|
|
stepperY1.runSpeed();
|
|
stepperY2.runSpeed();
|
|
}
|
|
yMinSteps = stepperY1.currentPosition();
|
|
Serial.print("Y Min: "); Serial.println(yMinSteps);
|
|
|
|
while (digitalRead(Y_MIN_PIN) == HIGH) {
|
|
stepperY1.setDirection(-1);
|
|
stepperY2.setDirection(-1);
|
|
stepperY1.runSpeed();
|
|
stepperY2.runSpeed();
|
|
}
|
|
stepperY1.setDirection(1);
|
|
stepperY2.setDirection(1);
|
|
yMaxSteps = stepperY1.currentPosition();
|
|
Serial.print("Y Max: "); Serial.println(yMaxSteps);
|
|
}
|
|
|
|
void calibrateZaxis(){
|
|
Serial.println("Calibrating Z axis");
|
|
|
|
while (digitalRead(Z_MIN_PIN) == HIGH) {
|
|
stepperZ1.runSpeed();
|
|
stepperZ2.runSpeed();
|
|
}
|
|
zMinSteps = stepperZ1.currentPosition();
|
|
Serial.print("Z Min: "); Serial.println(zMinSteps);
|
|
|
|
while (digitalRead(Z_MAX_PIN) == HIGH) {
|
|
stepperZ1.setDirection(-1);
|
|
stepperZ2.setDirection(-1);
|
|
stepperZ1.runSpeed();
|
|
stepperZ2.runSpeed();
|
|
}
|
|
stepperZ1.setDirection(1);
|
|
stepperZ2.setDirection(1);
|
|
zMaxSteps = stepperZ1.currentPosition();
|
|
Serial.print("Z Max: "); Serial.println(zMaxSteps);
|
|
}
|
|
void saveCalibrationData() {
|
|
EEPROM.put(EEPROM_X_MIN, xMinSteps);
|
|
EEPROM.put(EEPROM_X_MAX, xMaxSteps);
|
|
EEPROM.put(EEPROM_Y_MIN, yMinSteps);
|
|
EEPROM.put(EEPROM_Y_MAX, yMaxSteps);
|
|
EEPROM.put(EEPROM_Z_MIN, zMinSteps);
|
|
EEPROM.put(EEPROM_Z_MAX, zMaxSteps);
|
|
EEPROM.put(EEPROM_E_MAX, eMaxSteps);
|
|
EEPROM.write(EEPROM_CALIBRATED, 0xAA);
|
|
EEPROM.put(EEPROM_X_CUR, stepperX.currentPosition());
|
|
EEPROM.put(EEPROM_Y_CUR, stepperY1.currentPosition());
|
|
EEPROM.put(EEPROM_Z_CUR, stepperZ1.currentPosition());
|
|
Serial.println("Calibration data saved to EEPROM");
|
|
}
|
|
|
|
void saveCurrentAxisStepperPositions(){
|
|
EEPROM.put(EEPROM_X_CUR, stepperX.currentPosition());
|
|
EEPROM.put(EEPROM_Y_CUR, stepperY1.currentPosition());
|
|
EEPROM.put(EEPROM_Z_CUR, stepperZ1.currentPosition());
|
|
Serial.println("Current Stepper Position data saved to EEPROM");
|
|
}
|
|
|
|
void loadCalibrationData() {
|
|
long xCur, yCur, zCur;
|
|
EEPROM.get(EEPROM_X_MIN, xMinSteps);
|
|
EEPROM.get(EEPROM_X_MAX, xMaxSteps);
|
|
EEPROM.get(EEPROM_Y_MIN, yMinSteps);
|
|
EEPROM.get(EEPROM_Y_MAX, yMaxSteps);
|
|
EEPROM.get(EEPROM_Z_MIN, zMinSteps);
|
|
EEPROM.get(EEPROM_Z_MAX, zMaxSteps);
|
|
EEPROM.get(EEPROM_E_MAX, eMaxSteps);
|
|
EEPROM.get(EEPROM_X_CUR, xCur);
|
|
EEPROM.get(EEPROM_Y_CUR, yCur);
|
|
EEPROM.get(EEPROM_Z_CUR, zCur);
|
|
stepperX.setPosition(xCur);
|
|
stepperY1.setPosition(yCur);
|
|
stepperY2.setPosition(yCur);
|
|
stepperZ1.setPosition(zCur);
|
|
stepperZ2.setPosition(zCur);
|
|
}
|
|
|
|
void calculateStepsPerCM() {
|
|
// Motor specifications
|
|
const int STEPS_PER_ROTATION = 200;
|
|
|
|
const float X_DRIVE_GEAR = 20.0;
|
|
const float X_DRIVEN_GEAR = 35.0;
|
|
const float X_GEAR_RATIO = X_DRIVEN_GEAR / X_DRIVE_GEAR; // 35/20 = 1.75
|
|
|
|
const float YZ_DRIVE_GEAR = 20.0;
|
|
const float YZ_DRIVEN_GEAR = 60.0;
|
|
const float YZ_GEAR_RATIO = YZ_DRIVEN_GEAR / YZ_DRIVE_GEAR; // 60/20 = 3.0
|
|
|
|
const float CM_PER_DRIVEN_ROTATION = 1.0 / THREAD_ROTATIONS_PER_CM; // 1cm per 5.5 rotations = ~0.1818 cm/rotation
|
|
|
|
// Calculate steps per centimeter for each axis
|
|
|
|
// X-axis: Motor steps -> drive gear -> driven gear -> linear motion
|
|
// Steps per driven gear rotation = motor steps per rotation * gear ratio
|
|
float xStepsPerDrivenRotation = STEPS_PER_ROTATION * X_GEAR_RATIO;
|
|
xStepsPerCM = (xStepsPerDrivenRotation / (1.0 / (THREAD_ROTATIONS_PER_CM ))) * 10;
|
|
|
|
// Y and Z axis
|
|
float yzStepsPerDrivenRotation = STEPS_PER_ROTATION * YZ_GEAR_RATIO;
|
|
yStepsPerCM = (yzStepsPerDrivenRotation / CM_PER_DRIVEN_ROTATION) * 6.75;
|
|
zStepsPerCM = (yzStepsPerDrivenRotation / CM_PER_DRIVEN_ROTATION) * 6.75;
|
|
|
|
Serial.println("Steps per CM calculated:");
|
|
Serial.print("X-axis: ");
|
|
Serial.print(xStepsPerCM);
|
|
Serial.println(" steps/cm");
|
|
Serial.print("Y-axis: ");
|
|
Serial.print(yStepsPerCM);
|
|
Serial.println(" steps/cm");
|
|
Serial.print("Z-axis: ");
|
|
Serial.print(zStepsPerCM);
|
|
Serial.println(" steps/cm");
|
|
|
|
if (xMaxSteps != 0 || xMinSteps != 0) {
|
|
X_TRAVEL_CM = (abs(xMaxSteps - xMinSteps) / xStepsPerCM);
|
|
Serial.print("X-axis total travel: ");
|
|
Serial.print(X_TRAVEL_CM);
|
|
Serial.println(" cm");
|
|
}
|
|
|
|
if (yMaxSteps != 0 || yMinSteps != 0) {
|
|
Y_TRAVEL_CM = abs(yMaxSteps - yMinSteps) / yStepsPerCM;
|
|
Serial.print("Y-axis total travel: ");
|
|
Serial.print(Y_TRAVEL_CM);
|
|
Serial.println(" cm");
|
|
}
|
|
|
|
if (zMaxSteps != 0 || zMinSteps != 0) {
|
|
Z_TRAVEL_CM = abs(zMaxSteps - zMinSteps) / zStepsPerCM;
|
|
Serial.print("Z-axis total travel: ");
|
|
Serial.print(Z_TRAVEL_CM);
|
|
Serial.println(" cm");
|
|
}
|
|
}
|
|
|
|
void calculateStepsPerIndex() {
|
|
eStepsPerIndex = eMaxSteps / (EFFECTOR_COUNT);
|
|
//EFFECTOR_COUNT
|
|
Serial.println("Steps per Index calculated:");
|
|
Serial.print("E: "); Serial.println(eStepsPerIndex);
|
|
}
|
|
|
|
// Convert CM position to steps for each axis
|
|
long cmToStepsX(float cm) {
|
|
if (cm < 0) cm = 0;
|
|
if (cm > X_TRAVEL_CM) cm = X_TRAVEL_CM;
|
|
// Use the minimum step position as the 0 CM reference
|
|
return min(xMinSteps, xMaxSteps) + (long)(cm * xStepsPerCM);
|
|
}
|
|
|
|
long cmToStepsY(float cm) {
|
|
if (cm < 0) cm = 0;
|
|
if (cm > Y_TRAVEL_CM) cm = Y_TRAVEL_CM;
|
|
return min(yMinSteps, yMaxSteps) + (long)(cm * yStepsPerCM);
|
|
}
|
|
|
|
long cmToStepsZ(float cm) {
|
|
if (cm < 0) cm = 0;
|
|
if (cm > Z_TRAVEL_CM) cm = Z_TRAVEL_CM;
|
|
return min(zMinSteps, zMaxSteps) + (long)(cm * zStepsPerCM);
|
|
}
|
|
|
|
// Convert steps to CM position for each axis
|
|
float stepsToCmX(long steps) {
|
|
return (float)abs(steps - min(xMinSteps, xMaxSteps)) / xStepsPerCM;
|
|
}
|
|
|
|
float stepsToCmY(long steps) {
|
|
return (float)abs(steps - min(yMinSteps, yMaxSteps)) / yStepsPerCM;
|
|
}
|
|
|
|
float stepsToCmZ(long steps) {
|
|
return (float)abs(steps - min(zMinSteps, zMaxSteps)) / zStepsPerCM;
|
|
}
|
|
|
|
|
|
void moveToXCM(float xCM){
|
|
long xTarget = cmToStepsX(xCM);
|
|
|
|
Serial.print("Moving to: X="); Serial.print(xCM); Serial.println("cm");
|
|
|
|
stepperX.moveTo(xTarget);
|
|
|
|
while (stepperX.run()) {
|
|
// delay(1);
|
|
}
|
|
Serial.println("Move complete");
|
|
}
|
|
void moveToYCM(float yCM) {
|
|
long yTarget = cmToStepsY(yCM);
|
|
|
|
Serial.print("Moving to: Y="); Serial.print(yCM);Serial.println("cm");
|
|
|
|
stepperY1.moveTo(yTarget);
|
|
stepperY2.moveTo(yTarget);
|
|
|
|
while (stepperY1.run() &&
|
|
stepperY2.run()) {
|
|
stepperY1.run();
|
|
stepperY2.run();
|
|
}
|
|
Serial.println("Move complete");
|
|
}
|
|
// Move to specific CM coordinates
|
|
void moveToZCM(float zCM) {
|
|
|
|
long zTarget = cmToStepsZ(zCM);
|
|
|
|
Serial.print("Moving to: Z="); Serial.print(zCM); Serial.println("cm");
|
|
|
|
stepperZ1.moveTo(zTarget);
|
|
stepperZ2.moveTo(zTarget);
|
|
|
|
while (stepperZ1.run() &&
|
|
stepperZ2.run()) {
|
|
stepperZ1.run();
|
|
stepperZ2.run();
|
|
}
|
|
Serial.println("Move complete");
|
|
}
|
|
|
|
// Move to specific CM coordinates
|
|
void moveToCM(float xCM, float yCM, float zCM) {
|
|
|
|
long xTarget = cmToStepsX(xCM);
|
|
long yTarget = cmToStepsY(yCM);
|
|
long zTarget = cmToStepsZ(zCM);
|
|
|
|
Serial.print("Moving to: X="); Serial.print(xCM);
|
|
Serial.print("cm, Y="); Serial.print(yCM);
|
|
Serial.print("cm, Z="); Serial.print(zCM); Serial.println("cm");
|
|
|
|
stepperX.moveTo(xTarget);
|
|
stepperY1.moveTo(yTarget);
|
|
stepperY2.moveTo(yTarget);
|
|
stepperZ1.moveTo(zTarget);
|
|
stepperZ2.moveTo(zTarget);
|
|
|
|
while (stepperX.run()|| stepperY1.run() ||
|
|
stepperY2.run() || stepperZ1.run() ||
|
|
stepperZ2.run()) {
|
|
stepperX.run();
|
|
stepperY1.run();
|
|
stepperY2.run();
|
|
stepperZ1.run();
|
|
stepperZ2.run();
|
|
}
|
|
Serial.println("Move complete");
|
|
}
|
|
|
|
void moveToHome() {
|
|
moveToCM(0, 0, Z_TRAVEL_CM);
|
|
Serial.println("Moved to home position");
|
|
}
|
|
|
|
// Get current position in CM
|
|
void getCurrentPositionCM(float &xCM, float &yCM, float &zCM) {
|
|
xCM = stepsToCmX(stepperX.currentPosition());
|
|
yCM = stepsToCmY(stepperY1.currentPosition());
|
|
zCM = stepsToCmZ(stepperZ1.currentPosition());
|
|
}
|
|
|
|
// Print current position
|
|
void printCurrentPosition() {
|
|
float x, y, z;
|
|
getCurrentPositionCM(x, y, z);
|
|
Serial.print("Current Position - X: "); Serial.print(x);
|
|
Serial.print("cm, Y: "); Serial.print(y);
|
|
Serial.print("cm, Z: "); Serial.print(z); Serial.println("cm");
|
|
}
|
|
|
|
|
|
void connectElectromagnet() {
|
|
digitalWrite(ELECTROMAGNET_RELAY_PIN, HIGH);
|
|
Serial.println("Electromagnet ON - End effector connected");
|
|
}
|
|
|
|
void disconnectElectromagnet() {
|
|
digitalWrite(ELECTROMAGNET_RELAY_PIN, LOW);
|
|
Serial.println("Electromagnet OFF - End effector disconnected");
|
|
}
|
|
|
|
|
|
bool isElectromagnetConnected() {
|
|
return digitalRead(ELECTROMAGNET_RELAY_PIN) == HIGH;
|
|
}
|
|
|
|
|
|
void attachAtPosition(float xCM, float yCM, float zCM) {
|
|
Serial.println("Starting attachment sequence");
|
|
|
|
|
|
disconnectElectromagnet();
|
|
moveToCM(xCM, yCM, zCM);
|
|
|
|
delay(500);
|
|
|
|
connectElectromagnet();
|
|
unlatch();
|
|
|
|
Serial.println("Attachment sequence complete");
|
|
}
|
|
|
|
void detachAndMove(float xCM, float yCM, float zCM) {
|
|
Serial.println("Starting detachment sequence");
|
|
|
|
disconnectElectromagnet();
|
|
latch();
|
|
delay(200);
|
|
|
|
moveToCM(xCM, yCM, zCM);
|
|
|
|
Serial.println("Detachment sequence complete");
|
|
}
|
|
void moveAndDetach(float xCM, float yCM, float zCM) {
|
|
Serial.println("Starting detachment sequence");
|
|
|
|
moveToCM(xCM, yCM, zCM);
|
|
delay(200);
|
|
disconnectElectromagnet();
|
|
latch();
|
|
|
|
Serial.println("Detachment sequence complete");
|
|
}
|
|
|
|
|
|
|
|
void unlatch()
|
|
{
|
|
servo.write(UNLATCH_ANGLE);
|
|
delay(500);
|
|
}
|
|
|
|
void latch()
|
|
{
|
|
servo.write(LATCH_ANGLE);
|
|
delay(500);
|
|
}
|
|
// cur 5 goal 2
|
|
//
|
|
|
|
|
|
void moveEffectorIndex(short index) {
|
|
Serial.println("moveEffectorIndex");
|
|
if(index < 0 || index >= EFFECTOR_COUNT || index == EFFECTOR_INDEX){
|
|
return;
|
|
}
|
|
// long position = stepperEnd.currentPosition() % eMaxSteps;
|
|
int indexSteps = eStepsPerIndex;
|
|
int diff = 0;
|
|
if(index > EFFECTOR_INDEX){
|
|
diff = abs(index - EFFECTOR_INDEX) * indexSteps;
|
|
}else {
|
|
// Serial.print("EFFECTOR_INDEX: ");
|
|
// Serial.print(EFFECTOR_INDEX);
|
|
// Serial.print(", EFFECTOR_COUNT: ");
|
|
// Serial.print(EFFECTOR_COUNT);
|
|
// Serial.print(", EFFECTOR_INDEX: ");
|
|
// Serial.print(EFFECTOR_INDEX);
|
|
// Serial.print(", index: ");
|
|
// Serial.print(index);
|
|
// Serial.print(", res: ");
|
|
// Serial.println(((EFFECTOR_COUNT - (EFFECTOR_INDEX)) + index));
|
|
diff = ((EFFECTOR_COUNT - (EFFECTOR_INDEX)) + index) * indexSteps;
|
|
}
|
|
Serial.println(diff);
|
|
stepperEnd.move(diff);
|
|
EFFECTOR_INDEX = index;
|
|
while (stepperEnd.run()) {
|
|
delay(15);
|
|
}
|
|
delay(500);
|
|
} |