LoraComms/MasterTransceiverNode/MasterTransceiverNode.ino
2025-03-10 18:58:58 -05:00

669 lines
20 KiB
C++

#include <Adafruit_EEPROM_I2C.h>
#include <RHReliableDatagram.h>
#include <RH_RF95.h>
#include <Adafruit_EEPROM_I2C.h>
#define BROADCAST_ADDRESS 255
#define MASTER_NODE_ID 0
#define RFM95_CS 8
#define RFM95_INT 3
#define RFM95_RST 4
#define RF95_FREQ 915.0
#define EEPROM_START_ADDRESS 0
Adafruit_EEPROM_I2C EEPROM;
#define EEPROM_ADDR 0x50
#define MAX_NEIGHBORS 254
#define MAX_HOPS 20
#define MESSAGE_TYPE_BROADCAST 0
#define MESSAGE_TYPE_COMMAND 1
#define MESSAGE_TYPE_SENSOR_DATA 2
#define MESSAGE_TYPE_ACK 4
#define MESSAGE_TYPE_NETWORK_ADDITION_PROPOSAL 10
#define MESSAGE_TYPE_NETWORK_NEIGHBOUR_UPDATE 11
#define MESSAGE_TYPE_NETWORK_ROUTE_REQUEST 12
#define MESSAGE_CONSUMED 5
#define MESSAGE_NOT_CONSUMED 6
#define MAX_NODES 75
#define MAX_NODE_NEIGHBORS 15
#define MAX_SAVED_MSGS 100
struct Node {
int nodeId;
int neighbors[MAX_NODE_NEIGHBORS];
int neighborsCount;
};
struct Message {
uint8_t type;
uint8_t senderID;
uint8_t lastRelayID;
uint8_t targetID;
char id[10];
uint8_t hops;
char route[10];
char masterRoute[10];
char data[20];
uint8_t sensorType;
uint16_t sensorValue;
};
struct Neighbor {
uint8_t nodeID;
unsigned long lastSeen;
};
Node graph[MAX_NODES];
Neighbor neighbors[MAX_NEIGHBORS];
uint8_t neighborCount = 0;
RH_RF95 rf95(RFM95_CS, RFM95_INT);
RHReliableDatagram manager(rf95, MASTER_NODE_ID);
Message incomingMsg;
uint8_t masterIdList[MAX_NEIGHBORS];
int masterIdListLength = 0;
char consumedMessageIds[MAX_SAVED_MSGS][10];
char relayedMessageIds[MAX_SAVED_MSGS][10];
int consumedMsgCounter = 0;
int relayedMsgCounter = 0;
void updateGraph(Node graph[], int nodeId, int neighbors[], int neighborsCount, bool toRemove);
//TODO MAster should Broadcast prescence
void setup() {
Serial.begin(4800);
delay(10);
Serial.println("LoRa MASTER NODE");
if (EEPROM.begin(EEPROM_ADDR)) { // you can stick the new i2c addr in here, e.g. begin(0x51);
Serial.println("Found I2C EEPROM");
} else {
Serial.println("I2C EEPROM not identified ... check your connections?\r\n");
while (1) delay(10);
}
pinMode(RFM95_RST, OUTPUT);
digitalWrite(RFM95_RST, HIGH);
digitalWrite(RFM95_RST, LOW);
delay(10);
digitalWrite(RFM95_RST, HIGH);
delay(10);
while (!rf95.init()) {
while (1);
}
// Defaults after init are 434.0MHz, modulation GFSK_Rb250Fd250, +13dbM
if (!rf95.setFrequency(RF95_FREQ)) {
while (1);
}
// Defaults after init are 434.0MHz, 13dBm, Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on
// The default transmitter power is 13dBm, using PA_BOOST.
// If you are using RFM95/96/97/98 modules which uses the PA_BOOST transmitter pin, then
// you can set transmitter powers from 5 to 23 dBm:
rf95.setTxPower(20, false);
// Initialize EEPROM
if (EEPROM.read(EEPROM_START_ADDRESS) != 5) {
EEPROM.write(EEPROM_START_ADDRESS, 5);
EEPROM.write(EEPROM_START_ADDRESS + 1, masterIdListLength);
} else {
masterIdListLength = EEPROM.read(EEPROM_START_ADDRESS + 1);
for(int i = 0; i < masterIdListLength; i++) {
masterIdList[i] = EEPROM.read(EEPROM_START_ADDRESS + 3 + i);
}
}
initializeGraph(graph);
}
void loop() {
if (manager.available()) {
Message msg;
uint8_t len = sizeof(Message);
uint8_t from;
if (manager.recvfrom((uint8_t*)&msg, &len, &from)) {
Serial.println("Msg Recv");
handleIncomingMessage(msg);
}
}
// Broadcast presence
static signed long lastBroadcast = -1800000; // 30 mins
if (accurateMillis() - lastBroadcast >= 1800000) {
Serial.println("BroadCasting Presence");
broadcastPresence();
lastBroadcast = accurateMillis();
}
// Check and prune neighbors list
static signed long lastPrune = 0;
if (accurateMillis() - lastPrune >= 7200000) { // 2 hours
Serial.println("Prune Neighbours");
pruneNeighbors();
lastPrune = accurateMillis();
}
}
void handleIncomingMessage(Message &msg) {
// Check if message ID is in consumed or relayed lists
if (isMessageIDPresent(consumedMessageIds, msg.id) || isMessageIDPresent(relayedMessageIds, msg.id)) {
return; // Ignore duplicate messages
}
msg.hops++;
// Handle different message types
switch (msg.type) {
case MESSAGE_TYPE_NETWORK_ADDITION_PROPOSAL:
handleNetworkAdditionProposal(msg);
break;
case MESSAGE_TYPE_BROADCAST:
addNeighbor(msg.senderID);
Message ackMsg;
ackMsg.type = MESSAGE_TYPE_ACK;
ackMsg.targetID = msg.senderID;
ackMsg.senderID = MASTER_NODE_ID;
ackMsg.sensorValue = MESSAGE_CONSUMED;
ackMsg.hops = 0;
sendToTargetOrBroadcast(ackMsg);
break;
case MESSAGE_TYPE_NETWORK_NEIGHBOUR_UPDATE:
handleNetworkNeighbourUpdate(msg);
break;
case MESSAGE_TYPE_NETWORK_ROUTE_REQUEST:
handleNetworkRouteRequest(msg);
break;
default:
if (msg.targetID == MASTER_NODE_ID) {
consumeMessage(msg);
} else {
relayMessage(msg);
}
break;
}
}
void handleNetworkRouteRequest(Message receivedMsg) {
char* sp = shortestPath(graph, receivedMsg.senderID, receivedMsg.sensorValue);
char* rPath = redundantPath(graph, receivedMsg.senderID, receivedMsg.sensorValue);
// Constructing response
Message response;
response.type = MESSAGE_TYPE_NETWORK_ROUTE_REQUEST;
response.senderID = MASTER_NODE_ID;
response.targetID = receivedMsg.senderID;
response.hops = 0;
// Copy shortest path to data
for (int i = 0; i < 10; i++) {
response.data[i] = sp[i];
}
// Insert 100 as a separator
response.data[10] = 100;
// Copy redundant path to data
for (int i = 0; i < 10; i++) {
response.data[11 + i] = rPath[i];
}
// Getting the path from master to the sender
char* pathToSender = shortestPath(graph, MASTER_NODE_ID, receivedMsg.senderID);
for (int i = 0; i < 10; i++) {
response.route[i] = pathToSender[i];
}
// Send the message using pathed route
manager.sendto((uint8_t*)&response, sizeof(Message), response.route[response.hops]);
const uint16_t ACK_TIMEOUT = 2500; // 500 milliseconds
// Wait for an acknowledgment with specific values
unsigned long startTime = accurateMillis();
while (accurateMillis() - startTime < ACK_TIMEOUT) {// 5 secs = 5000 milliseconds
if (manager.available()) {
// Read the incoming message
Message incomingMsg;
uint8_t len = sizeof(Message);
uint8_t from;
manager.recvfrom((uint8_t*)&incomingMsg, &len, &from);
if (incomingMsg.senderID != receivedMsg.senderID && incomingMsg.targetID == MASTER_NODE_ID && strcmp(incomingMsg.data, "300")) {
return;
}
}
}
}
void handleNetworkNeighbourUpdate(Message &msg) {
// Assuming neighbors are sent as comma-separated values in data
int neighbors[MAX_NODE_NEIGHBORS];
int neighborsCount = 0;
char *token = strtok(msg.data, ",");
while(token != nullptr && neighborsCount < MAX_NEIGHBORS) {
int nodeId;
if(sscanf(token, "%d", &nodeId) == 1) {
neighbors[neighborsCount++] = nodeId;
}
token = strtok(nullptr, ",");
}
updateGraph(graph, msg.senderID, neighbors, neighborsCount, false);
}
void handleNetworkAdditionProposal(Message &msg) {
int proposedID = atoi(msg.data);
bool idExists = false;
for (int i = 0; i < masterIdListLength; i++) {
if (masterIdList[i] == proposedID) {
idExists = true;
break;
}
}
Message responseMsg;
responseMsg.senderID = MASTER_NODE_ID;
responseMsg.targetID = msg.senderID;
responseMsg.type = MESSAGE_TYPE_NETWORK_ADDITION_PROPOSAL;
if (idExists || masterIdListLength >= 255) {
sprintf(responseMsg.data, "500%d", proposedID);
} else {
masterIdList[masterIdListLength++] = proposedID;
updateEEPROM();
sprintf(responseMsg.data, "300%d", proposedID);
updateGraph(graph, proposedID, {}, 0, false);
//, int nodeId, int neighbors[], int neighborsCount, bool toRemove = false
}
sendToTargetOrBroadcast(responseMsg);
}
void consumeMessage(Message &msg) {
// Cache the message ID in the consumed list
cacheMessageID(consumedMessageIds, msg.id);
// TODO
}
void relayMessage(Message msg) {
// Cache the message ID in the relayed list
cacheMessageID(relayedMessageIds, msg.id);
msg.lastRelayID = MASTER_NODE_ID;
if (msg.targetID != BROADCAST_ADDRESS) {
// Send the message using pathed route
manager.sendto((uint8_t*)&msg, sizeof(Message), msg.route[msg.hops]);
const uint16_t ACK_TIMEOUT = 2500; // 500 milliseconds
// Wait for an acknowledgment with specific values
unsigned long startTime = accurateMillis();
while (accurateMillis() - startTime < ACK_TIMEOUT) {// 5 secs = 5000 milliseconds
if (manager.available()) {
// Read the incoming message
Message incomingMsg;
uint8_t len = sizeof(Message);
uint8_t from;
manager.recvfrom((uint8_t*)&incomingMsg, &len, &from);
if (incomingMsg.senderID != msg.senderID && incomingMsg.targetID == MASTER_NODE_ID && strcmp(incomingMsg.data, "300")) {
return;
}
}
}
// bool isClose = isNeighbor(msg.targetID);
// const uint16_t ACK_TIMEOUT = 2500; // 500 milliseconds
// uint64_t startTime = accurateMillis();
// if(isClose){
// manager.sendto((uint8_t *)&msg, sizeof(Message), msg.targetID);
// unsigned long startTime = accurateMillis();
// while (accurateMillis() - startTime < ACK_TIMEOUT) {// 5 secs = 5000 milliseconds
// if (manager.available()) {
// // Read the incoming message
// Message incomingMsg;
// uint8_t len = sizeof(Message);
// uint8_t from;
// manager.recvfrom((uint8_t*)&incomingMsg, &len, &from);
// if (incomingMsg.type == MESSAGE_TYPE_ACK && incomingMsg.targetID == MASTER_NODE_ID) {
// return;
// }
// }
// }
// }else {
// for (uint8_t i = 0; i < neighborCount; i++) {
// manager.sendto((uint8_t *)&msg, sizeof(Message), neighbors[i].nodeID);
// unsigned long startTime = accurateMillis();
// while (accurateMillis() - startTime < ACK_TIMEOUT) {// 5 secs = 5000 milliseconds
// if (manager.available()) {
// // Read the incoming message
// Message incomingMsg;
// uint8_t len = sizeof(Message);
// uint8_t from;
// manager.recvfrom((uint8_t*)&incomingMsg, &len, &from);
// if (incomingMsg.type == MESSAGE_TYPE_ACK && incomingMsg.targetID == MASTER_NODE_ID) {
// break;// continue for loop to send to neighbours
// }
// }
// }
// }
// }
}
}
void cacheMessageID(char list[MAX_SAVED_MSGS][10], const char* id) {
for (int i = MAX_SAVED_MSGS - 1; i > 0; i--) {
strcpy(list[i], list[i - 1]);
}
strcpy(list[0], id);
}
bool isMessageIDPresent(char list[100][10], const char* id) {
for (int i = 0; i < MAX_SAVED_MSGS; i++) {
if (strcmp(list[i], id) == 0) {
return true;
}
}
return false;
}
void updateEEPROM() {
EEPROM.write(1, masterIdListLength);
for (int i = 0; i < masterIdListLength; i++) {
EEPROM.write(3 + i, masterIdList[i]);
}
}
uint64_t accurateMillis() {
const uint64_t maxMillisValue = 0xFFFFFFFF; // max val of unsigned long
const uint64_t overflowIntervalMillis = maxMillisValue + 1;
static uint64_t lastMillisValue = 0;
static short numOverflows = 0; // 7 overflows a year, 140 in 20 years, if this is still running jesus
uint64_t currentMillisValue = millis();
// rip overflowed
if (currentMillisValue < lastMillisValue) {
numOverflows++;
}
lastMillisValue = currentMillisValue;
return (numOverflows * overflowIntervalMillis) + currentMillisValue;
}
bool isNeighbor(uint8_t nodeId) {
for (uint8_t i = 0; i < neighborCount; i++) {
if (neighbors[i].nodeID == nodeId) {
return true;
}
}
return false;
}
void broadcastPresence() {
Message msg;
msg.type = MESSAGE_TYPE_BROADCAST;
msg.senderID = MASTER_NODE_ID;
msg.targetID = BROADCAST_ADDRESS;
strncpy(msg.id, generateMessageID(), sizeof(msg.id));
msg.hops = 0;
// Fill other data fields if necessary
manager.sendto((uint8_t*)&msg, sizeof(Message), BROADCAST_ADDRESS);
}
void addNeighbor(uint8_t id) {
for (uint8_t i = 0; i < neighborCount; i++) {
if (neighbors[i].nodeID == id) {
neighbors[i].lastSeen = accurateMillis();
return;
}
}
if (neighborCount < MAX_NEIGHBORS) {
neighbors[neighborCount].nodeID = id;
neighbors[neighborCount].lastSeen = accurateMillis();
neighborCount++;
}
}
void pruneNeighbors() {
for (uint8_t i = 0; i < neighborCount; i++) {
if (accurateMillis() - neighbors[i].lastSeen >= 3600000 / 4 * 3) { // 1 hours / 4 * 3 = 45 mins
for (uint8_t j = i; j < neighborCount - 1; j++) {
neighbors[j] = neighbors[j + 1];
}
neighborCount--;
i--; // Check the same index again
}
}
}
void sendToTargetOrBroadcast(Message& message) {
if (isNeighbor(message.targetID)) {
manager.sendto((uint8_t*)&message, sizeof(Message), message.targetID);
} else {
manager.sendto((uint8_t*)&message, sizeof(Message), BROADCAST_ADDRESS);
}
}
void initializeGraph(Node graph[]) {
for (int i = 0; i < MAX_NODES; i++) {
graph[i].nodeId = -1;
graph[i].neighborsCount = 0;
}
updateGraph(graph, MASTER_NODE_ID, {}, 0, false); // Initilize master Node
}
int findNodeIndex(Node graph[], int nodeId) {
for(int i = 0; i < MAX_NODES; i++) {
if(graph[i].nodeId == nodeId) {
return i;
}
}
return -1; // Node not found
}
void enqueue(int queue[], int val, int &rear) {
queue[rear++] = val;
}
int dequeue(int queue[], int &front) {
return queue[front++];
}
bool isEmpty(int front, int rear) {
return front == rear;
}
char* shortestPath(Node graph[], int start, int end) {
int queue[MAX_NODES];
int front = 0, rear = 0;
int pathLength = 0;
char prevNode[MAX_NODES];
for(int i = 0; i < MAX_NODES; i++) {
prevNode[i] = -1;
}
char* path = (char*) malloc(MAX_NODES * sizeof(char));
for(int i = 0; i < MAX_NODES; i++) {
path[i] = 100;
}
enqueue(queue, start, rear);
while(!isEmpty(front, rear)) {
char node = (char)dequeue(queue, front);
int index = findNodeIndex(graph, node);
for(int i = 0; i < graph[index].neighborsCount; i++) {
int neighbor = graph[index].neighbors[i];
if(prevNode[neighbor] == -1 && neighbor != start) {
enqueue(queue, neighbor, rear);
prevNode[neighbor] = node;
}
}
}
pathLength = 0;
for(char at = end; at != start; at = prevNode[at]) {
path[pathLength++] = at;
}
path[pathLength++] = start;
// Reversing the path
for(int i = 0; i < pathLength / 2; i++) {
char temp = path[i];
path[i] = path[pathLength - 1 - i];
path[pathLength - 1 - i] = temp;
}
return path;
}
int getNeighborsCount(Node graph[], int nodeId) {
int index = findNodeIndex(graph, nodeId);
if(index == -1) {
// Handle error
return 0;
}
return graph[index].neighborsCount;
}
void resetVisited(bool visited[]) {
for(int i = 0; i < MAX_NODES; i++) {
visited[i] = false;
}
}
int mostConnectedNeighbor(Node graph[], bool visited[], int nodeId) {
int index = findNodeIndex(graph, nodeId);
int maxNeighbors = -1;
int chosenNode = -1;
for(int i = 0; i < graph[index].neighborsCount; i++) {
int neighborId = graph[index].neighbors[i];
int count = getNeighborsCount(graph, neighborId);
if(!visited[neighborId] && count > maxNeighbors) {
maxNeighbors = count;
chosenNode = neighborId;
}
}
visited[chosenNode] = true;
return chosenNode;
}
bool redundantPathDFS(Node graph[], bool visited[], int start, int end, char path[], int &pathLength) {
if(start == end) {
path[pathLength++] = end;
return true;
}
visited[start] = true;
int nextNode = mostConnectedNeighbor(graph, visited, start);
while(nextNode != -1) {
if(redundantPathDFS(graph, visited, nextNode, end, path, pathLength)) {
path[pathLength++] = start;
return true;
}
nextNode = mostConnectedNeighbor(graph, visited, start);
}
return false;
}
char* redundantPath(Node graph[], int start, int end ) {
bool visited[MAX_NODES];
resetVisited(visited);
int pathLength = 0;
char* path = (char*) malloc(MAX_NODES * sizeof(char));
for(int i = 0; i < MAX_NODES; i++) {
path[i] = 100;
}
if(!redundantPathDFS(graph, visited, start, end, path, pathLength)) {
// Handle case where no path exists
pathLength = -1;
} else {
// Reversing the path to get it from start to end
for(int i = 0; i < pathLength / 2; i++) {
int temp = path[i];
path[i] = path[pathLength - 1 - i];
path[pathLength - 1 - i] = temp;
}
}
return path;
}
char* generateMessageID() {
static char id[10]; // 9 characters + null terminator
const char* charset = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
for(int i = 0; i < 9; i++) {
id[i] = charset[random(0, 62)]; // 62 possible alphanumeric characters
}
id[9] = '\0'; // Null terminate the string
return id;
}
void updateGraph(Node graph[], int nodeId, int neighbors[], int neighborsCount, bool toRemove) {
int index = findNodeIndex(graph, nodeId);
if(toRemove) {
if(index == -1) {
// Handle error: Node not found to remove
return;
}
// Remove nodeId from all its neighboring nodes' neighbors list
for(int i = 0; i < graph[index].neighborsCount; i++) {
int neighborIndex = findNodeIndex(graph, graph[index].neighbors[i]);
for(int j = 0; j < graph[neighborIndex].neighborsCount; j++) {
if(graph[neighborIndex].neighbors[j] == nodeId) {
for(int k = j; k < graph[neighborIndex].neighborsCount - 1; k++) {
graph[neighborIndex].neighbors[k] = graph[neighborIndex].neighbors[k + 1];
}
graph[neighborIndex].neighborsCount--;
break;
}
}
}
// Reset the node's data
graph[index].nodeId = -1;
graph[index].neighborsCount = 0;
} else {
if(index == -1) {
// Add the new node
for(index = 0; index < MAX_NODES; index++) {
if(graph[index].nodeId == -1) {
graph[index].nodeId = nodeId;
break;
}
}
}
// Update the neighbors
for(int i = 0; i < neighborsCount; i++) {
graph[index].neighbors[i] = neighbors[i];
}
graph[index].neighborsCount = neighborsCount;
}
}