larger overlap

This commit is contained in:
2ManyProjects 2026-01-11 09:54:16 -06:00
parent c31220532b
commit e9436f1bb5

View file

@ -4,6 +4,11 @@ Stitching Scanner v2 - Simplified unified approach
Same displacement-based stitching for both horizontal rows and vertical row transitions.
No complex visual matching - just track displacement and append strips.
Continuous alignment correction for gear slippage compensation.
FIXES:
- Row-start alignment now checks BOTH bottom and side edges
- Larger overlap regions for better phase correlation
- Better strip capture with more overlap
"""
import cv2
@ -91,7 +96,7 @@ class StitchingScanner:
self._state_lock = threading.Lock()
self.mosaic: Optional[np.ndarray] = None
self._mosaic_lock = threading.Lock()
self._mosaic_lock = threading.RLock() # Changed to RLock to avoid deadlocks
self._prev_frame: Optional[np.ndarray] = None
self._displacement_since_append_x: float = 0.0
@ -172,6 +177,133 @@ class StitchingScanner:
return (dx, dy)
def _detect_row_start_alignment(self, frame: np.ndarray, direction: ScanDirection) -> AlignmentOffset:
"""
Detect alignment at the START of a new row by comparing against BOTH:
1. The bottom edge of the mosaic (for Y alignment from vertical movement)
2. The appropriate side edge (for X alignment)
This is called after a row transition to properly position the first strip.
Args:
frame: Current camera frame at the start of the new row
direction: The horizontal scan direction for this row (LEFT or RIGHT)
Returns:
AlignmentOffset with combined X/Y correction needed
"""
offset = AlignmentOffset()
with self._mosaic_lock:
if self.mosaic is None:
return offset
mh, mw = self.mosaic.shape[:2]
fh, fw = frame.shape[:2]
# Use larger overlap regions for better alignment at row start
max_overlap = 300 # Increased from 200 for better detection
min_overlap = 50 # Increased minimum for reliability
# =============================================
# Step 1: Detect Y alignment from bottom edge
# =============================================
vertical_overlap = min(fh // 2, max_overlap)
if vertical_overlap >= min_overlap:
# Get the position where we expect the frame to be
# After row transition, the frame should overlap with the bottom of mosaic
expected_x = int(self.state.current_x)
# Clamp X position
if direction == ScanDirection.LEFT:
# For LEFT scanning, we're at the right edge of the mosaic
expected_x = max(0, mw - fw)
else:
# For RIGHT scanning, we're at the left edge
expected_x = 0
# Extract bottom of mosaic
mosaic_bottom = self.mosaic[mh - vertical_overlap:mh,
expected_x:min(expected_x + fw, mw)]
frame_top = frame[:vertical_overlap, :mosaic_bottom.shape[1]]
if mosaic_bottom.shape[0] >= min_overlap and mosaic_bottom.shape[1] >= min_overlap:
# Ensure same size
min_h = min(mosaic_bottom.shape[0], frame_top.shape[0])
min_w = min(mosaic_bottom.shape[1], frame_top.shape[1])
if min_h >= min_overlap and min_w >= min_overlap:
mosaic_bottom = mosaic_bottom[:min_h, :min_w]
frame_top = frame_top[:min_h, :min_w]
dx_v, dy_v, conf_v = self._detect_displacement_with_confidence(
mosaic_bottom, frame_top)
self.log(f" Row-start vertical alignment: dx={dx_v:.1f}, dy={dy_v:.1f}, conf={conf_v:.3f}")
if conf_v > 0.05: # Lower threshold for row start
offset.y_offset = dy_v
offset.confidence = conf_v
# =============================================
# Step 2: Detect X alignment from side edge
# =============================================
horizontal_overlap = min(fw // 2, max_overlap)
if horizontal_overlap >= min_overlap:
# Calculate where we expect to align horizontally
# The frame's bottom portion should overlap with mosaic's bottom
expected_y = max(0, mh - fh) # Y position based on row overlap
if direction == ScanDirection.LEFT:
# For LEFT scan: compare left portion of frame with right edge of mosaic
mosaic_right = self.mosaic[expected_y:min(expected_y + fh, mh),
mw - horizontal_overlap:mw]
frame_left = frame[:mosaic_right.shape[0], :horizontal_overlap]
else:
# For RIGHT scan: compare right portion of frame with left edge of mosaic
# (This is mainly for row 0, but kept for completeness)
mosaic_left = self.mosaic[expected_y:min(expected_y + fh, mh),
:horizontal_overlap]
frame_right = frame[:mosaic_left.shape[0], fw - horizontal_overlap:]
mosaic_right = mosaic_left
frame_left = frame_right
if mosaic_right.shape[0] >= min_overlap and mosaic_right.shape[1] >= min_overlap:
# Ensure same size
min_h = min(mosaic_right.shape[0], frame_left.shape[0])
min_w = min(mosaic_right.shape[1], frame_left.shape[1])
if min_h >= min_overlap and min_w >= min_overlap:
mosaic_right = mosaic_right[:min_h, :min_w]
frame_left = frame_left[:min_h, :min_w]
dx_h, dy_h, conf_h = self._detect_displacement_with_confidence(
mosaic_right, frame_left)
self.log(f" Row-start horizontal alignment: dx={dx_h:.1f}, dy={dy_h:.1f}, conf={conf_h:.3f}")
if conf_h > 0.05: # Lower threshold for row start
offset.x_offset = dx_h
# Use higher confidence of the two
if conf_h > offset.confidence:
offset.confidence = conf_h
# Validate combined offset
max_adjust = 100 # Allow larger adjustment at row start
if abs(offset.x_offset) > max_adjust or abs(offset.y_offset) > max_adjust:
self.log(f" Row-start alignment: offset too large ({offset.x_offset:.1f}, {offset.y_offset:.1f}), limiting")
offset.x_offset = max(-max_adjust, min(max_adjust, offset.x_offset))
offset.y_offset = max(-max_adjust, min(max_adjust, offset.y_offset))
offset.valid = offset.confidence > 0.05
if offset.valid:
self.log(f" Row-start alignment FINAL: X={offset.x_offset:.1f}, Y={offset.y_offset:.1f}, conf={offset.confidence:.3f}")
return offset
def _detect_strip_alignment(self, frame: np.ndarray, direction: ScanDirection,
expected_x: int, expected_y: int) -> AlignmentOffset:
"""
@ -191,95 +323,100 @@ class StitchingScanner:
"""
offset = AlignmentOffset()
if self.mosaic is None:
return offset
mh, mw = self.mosaic.shape[:2]
fh, fw = frame.shape[:2]
# Clamp expected positions
expected_y = max(0, min(expected_y, mh - fh))
expected_x = max(0, min(expected_x, mw - fw))
if direction == ScanDirection.RIGHT:
# We're appending to the right
# Compare left portion of frame with right edge of mosaic
overlap_width = min(fw // 2, mw - expected_x, 200) # Use up to 200px overlap
if overlap_width < 30:
with self._mosaic_lock:
if self.mosaic is None:
return offset
# Extract regions
mosaic_region = self.mosaic[expected_y:expected_y + fh, mw - overlap_width:mw]
frame_region = frame[:, :overlap_width]
mh, mw = self.mosaic.shape[:2]
fh, fw = frame.shape[:2]
elif direction == ScanDirection.LEFT:
# We're placing within existing mosaic, moving left
# Compare right portion of frame with mosaic at expected position
overlap_width = min(fw // 2, mw - expected_x, 200)
# Clamp expected positions
expected_y = max(0, min(expected_y, mh - fh))
expected_x = max(0, min(expected_x, mw - fw))
if overlap_width < 30:
# Increased overlap for better detection
max_overlap = 250 # Increased from 200
min_overlap = 40 # Increased from 30
if direction == ScanDirection.RIGHT:
# We're appending to the right
# Compare left portion of frame with right edge of mosaic
overlap_width = min(fw // 2, mw - expected_x, max_overlap)
if overlap_width < min_overlap:
return offset
# Extract regions
mosaic_region = self.mosaic[expected_y:expected_y + fh, mw - overlap_width:mw]
frame_region = frame[:, :overlap_width]
elif direction == ScanDirection.LEFT:
# We're placing within existing mosaic, moving left
# Compare right portion of frame with mosaic at expected position
overlap_width = min(fw // 2, mw - expected_x, max_overlap)
if overlap_width < min_overlap:
return offset
# The frame's right edge should align with mosaic at expected_x + fw
mosaic_x_end = min(expected_x + fw, mw)
mosaic_x_start = max(mosaic_x_end - overlap_width, 0)
actual_overlap = mosaic_x_end - mosaic_x_start
if actual_overlap < min_overlap:
return offset
mosaic_region = self.mosaic[expected_y:expected_y + fh, mosaic_x_start:mosaic_x_end]
frame_region = frame[:, fw - actual_overlap:]
elif direction == ScanDirection.DOWN:
# We're appending below
# Compare top portion of frame with bottom edge of mosaic
overlap_height = min(fh // 2, mh - expected_y, max_overlap)
if overlap_height < min_overlap:
return offset
mosaic_region = self.mosaic[mh - overlap_height:mh, expected_x:expected_x + fw]
frame_region = frame[:overlap_height, :]
else: # UP
# Compare bottom portion of frame with top edge of mosaic
overlap_height = min(fh // 2, expected_y, max_overlap)
if overlap_height < min_overlap:
return offset
mosaic_region = self.mosaic[:overlap_height, expected_x:expected_x + fw]
frame_region = frame[fh - overlap_height:, :]
# Ensure regions have the same size
min_h = min(mosaic_region.shape[0], frame_region.shape[0])
min_w = min(mosaic_region.shape[1], frame_region.shape[1])
if min_h < min_overlap or min_w < min_overlap:
self.log(f"Strip alignment: overlap too small ({min_w}x{min_h})")
return offset
# The frame's right edge should align with mosaic at expected_x + fw
mosaic_x_end = min(expected_x + fw, mw)
mosaic_x_start = max(mosaic_x_end - overlap_width, 0)
actual_overlap = mosaic_x_end - mosaic_x_start
mosaic_region = mosaic_region[:min_h, :min_w]
frame_region = frame_region[:min_h, :min_w]
if actual_overlap < 30:
# Detect displacement with confidence
dx, dy, confidence = self._detect_displacement_with_confidence(mosaic_region, frame_region)
# Sanity check - reject large displacements
max_adjust = 50 # Max pixels to adjust
if abs(dx) > max_adjust or abs(dy) > max_adjust:
self.log(f"Strip alignment: displacement too large ({dx:.1f}, {dy:.1f}), ignoring")
return offset
mosaic_region = self.mosaic[expected_y:expected_y + fh, mosaic_x_start:mosaic_x_end]
frame_region = frame[:, fw - actual_overlap:]
offset.x_offset = dx
offset.y_offset = dy
offset.confidence = confidence
offset.valid = confidence > 0.1 # Require minimum confidence
elif direction == ScanDirection.DOWN:
# We're appending below
# Compare top portion of frame with bottom edge of mosaic
overlap_height = min(fh // 2, mh - expected_y, 200)
if overlap_height < 30:
return offset
mosaic_region = self.mosaic[mh - overlap_height:mh, expected_x:expected_x + fw]
frame_region = frame[:overlap_height, :]
else: # UP
# Compare bottom portion of frame with top edge of mosaic
overlap_height = min(fh // 2, expected_y, 200)
if overlap_height < 30:
return offset
mosaic_region = self.mosaic[:overlap_height, expected_x:expected_x + fw]
frame_region = frame[fh - overlap_height:, :]
# Ensure regions have the same size
min_h = min(mosaic_region.shape[0], frame_region.shape[0])
min_w = min(mosaic_region.shape[1], frame_region.shape[1])
if min_h < 30 or min_w < 30:
self.log(f"Strip alignment: overlap too small ({min_w}x{min_h})")
return offset
mosaic_region = mosaic_region[:min_h, :min_w]
frame_region = frame_region[:min_h, :min_w]
# Detect displacement with confidence
dx, dy, confidence = self._detect_displacement_with_confidence(mosaic_region, frame_region)
# Sanity check - reject large displacements
max_adjust = 50 # Max pixels to adjust
if abs(dx) > max_adjust or abs(dy) > max_adjust:
self.log(f"Strip alignment: displacement too large ({dx:.1f}, {dy:.1f}), ignoring")
return offset
offset.x_offset = dx
offset.y_offset = dy
offset.confidence = confidence
offset.valid = confidence > 0.1 # Require minimum confidence
if offset.valid:
self.log(f" Strip alignment: X={dx:.1f}, Y={dy:.1f}, conf={confidence:.3f}")
if offset.valid:
self.log(f" Strip alignment: X={dx:.1f}, Y={dy:.1f}, conf={confidence:.3f}")
return offset
@ -380,8 +517,7 @@ class StitchingScanner:
y_offset = y_offset - int(round(alignment_y))
# Clamp x_offset to valid range
x_offset = max(0, min(x_offset, w_base - blend_w))
# x_offset = 0 - min(x_offset, w_base)
x_offset = 0 - min(x_offset, w_base)
# Handle strip cropping if y_offset is negative (strip protrudes above frame)
strip_y_start = 0 # How much to crop from top of strip
@ -591,217 +727,8 @@ class StitchingScanner:
result[sh:] = base[blend_h:]
return result
def _detect_row_start_alignment(self, frame: np.ndarray, direction: ScanDirection) -> AlignmentOffset:
"""
Detect alignment at the start of a new row by comparing the current frame
with a large region of the mosaic.
Uses a LARGE overlap (most of the frame) because after row transition:
- There's both vertical overlap (from row above) and horizontal overlap (from start position)
- More overlap = better phase correlation accuracy
- First strip alignment is critical for the entire row
For LEFT direction (starting at right edge): compare against bottom-right of mosaic
For RIGHT direction (starting at left edge): compare against bottom-left of mosaic
"""
offset = AlignmentOffset()
if self.mosaic is None:
return offset
mh, mw = self.mosaic.shape[:2]
fh, fw = frame.shape[:2]
# Use LARGE overlap - 75% of frame dimensions for better matching
overlap_width = int(fw * 0.75)
overlap_height = int(fh * 0.75)
# Ensure we don't exceed mosaic dimensions
overlap_width = min(overlap_width, mw)
overlap_height = min(overlap_height, mh)
if overlap_width < 100 or overlap_height < 100:
self.log(f"Row start alignment: overlap too small ({overlap_width}x{overlap_height})")
return offset
if direction == ScanDirection.LEFT:
# Starting at right edge, going left
# Compare frame's top-right region with mosaic's bottom-right region
# Frame region: top-right (where it overlaps with existing mosaic)
frame_region = frame[:overlap_height, fw - overlap_width:]
# Mosaic region: bottom-right corner
mosaic_region = self.mosaic[mh - overlap_height:mh, mw - overlap_width:mw]
else: # RIGHT direction
# Starting at left edge, going right
# Compare frame's top-left region with mosaic's bottom-left region
# Frame region: top-left
frame_region = frame[:overlap_height, :overlap_width]
# Mosaic region: bottom-left corner
mosaic_region = self.mosaic[mh - overlap_height:mh, :overlap_width]
# Ensure regions have the same size
min_h = min(mosaic_region.shape[0], frame_region.shape[0])
min_w = min(mosaic_region.shape[1], frame_region.shape[1])
if min_h < 100 or min_w < 100:
self.log(f"Row start alignment: region too small ({min_w}x{min_h})")
return offset
mosaic_region = mosaic_region[:min_h, :min_w]
frame_region = frame_region[:min_h, :min_w]
# Detect displacement with confidence
dx, dy, confidence = self._detect_displacement_with_confidence(mosaic_region, frame_region)
# Sanity check - allow larger adjustment at row start due to gear backlash
max_adjust = 150
if abs(dx) > max_adjust or abs(dy) > max_adjust:
self.log(f"Row start alignment: displacement too large ({dx:.1f}, {dy:.1f}), ignoring")
return offset
offset.x_offset = dx
offset.y_offset = dy
offset.confidence = confidence
offset.valid = confidence > 0.05 # Lower threshold - large overlap should give good confidence
self.log(f"=== Row Start Alignment ({direction.value}) ===")
self.log(f" Mosaic: {mw}x{mh}, Frame: {fw}x{fh}")
self.log(f" Overlap region: {min_w}x{min_h} (75% of frame)")
self.log(f" Detected offset: X={dx:.1f}, Y={dy:.1f}, conf={confidence:.3f}")
self.log(f" Valid: {offset.valid}")
return offset
def _append_first_strip_of_row(self, frame: np.ndarray, direction: ScanDirection, alignment: AlignmentOffset):
"""
Append the first strip of a new row with proper positioning.
For LEFT direction: Frame overlaps with bottom-right of mosaic
For RIGHT direction: Frame overlaps with bottom-left of mosaic
"""
BLEND_WIDTH = 20
with self._mosaic_lock:
if self.mosaic is None:
return
mh, mw = self.mosaic.shape[:2]
fh, fw = frame.shape[:2]
self.log(f"=== First Strip of Row ({direction.value}) ===")
self.log(f" Mosaic: {mw}x{mh}, Frame: {fw}x{fh}")
self.log(f" Alignment input: X={alignment.x_offset:.1f}, Y={alignment.y_offset:.1f}, valid={alignment.valid}")
# Apply alignment to cumulative tracking
if alignment.valid:
self._cumulative_align_x += alignment.x_offset
self._cumulative_align_y += alignment.y_offset
self._last_strip_alignment = alignment
# Calculate Y position - frame overlaps with bottom of mosaic
row_overlap_pixels = int(fh * self.config.row_overlap)
y_offset = mh - row_overlap_pixels + int(round(self._cumulative_align_y))
y_offset = max(0, min(y_offset, mh - fh)) # Clamp to valid range
if direction == ScanDirection.LEFT:
# Starting at RIGHT edge, going LEFT
# Frame's RIGHT edge aligns with mosaic's RIGHT edge
# x_offset is where the LEFT edge of the frame goes
x_offset = mw - fw + int(round(self._cumulative_align_x))
x_offset = max(0, min(x_offset, mw - fw))
# For LEFT scanning, current_x tracks where LEFT edge of current frame is
# This will DECREASE as we scan left
start_x_for_scanning = x_offset
else: # RIGHT
# Starting at LEFT edge, going RIGHT
x_offset = int(round(self._cumulative_align_x))
x_offset = max(0, x_offset)
start_x_for_scanning = 0
self.log(f" Calculated x_offset: {x_offset}, y_offset: {y_offset}")
# Blend frame into mosaic at calculated position
# Simply overwrite with blending - no expansion needed
result = self.mosaic.copy()
# Calculate valid region
x_end = min(x_offset + fw, mw)
y_end = min(y_offset + fh, mh)
frame_x_end = x_end - x_offset
frame_y_end = y_end - y_offset
if frame_x_end <= 0 or frame_y_end <= 0:
self.log(f" WARNING: No valid region to blend")
return
self.log(f" Blending region: mosaic[{y_offset}:{y_end}, {x_offset}:{x_end}]")
self.log(f" Frame region: frame[0:{frame_y_end}, 0:{frame_x_end}]")
# Create alpha mask for smooth blending
alpha = np.ones((frame_y_end, frame_x_end), dtype=np.float32)
# Vertical blend at top (blending with row above)
v_blend = min(row_overlap_pixels // 2, frame_y_end // 3)
if v_blend > 5:
v_gradient = np.linspace(0, 1, v_blend, dtype=np.float32)[:, np.newaxis]
alpha[:v_blend, :] *= v_gradient
# Horizontal blend at the edge we came from
h_blend = min(BLEND_WIDTH, frame_x_end // 4)
if h_blend > 5:
if direction == ScanDirection.LEFT:
# Came from right, blend right edge
h_gradient = np.linspace(1, 0, h_blend, dtype=np.float32)[np.newaxis, :]
alpha[:, -h_blend:] *= h_gradient
else:
# Came from left (or starting), blend left edge if not at edge
if x_offset > 0:
h_gradient = np.linspace(0, 1, h_blend, dtype=np.float32)[np.newaxis, :]
alpha[:, :h_blend] *= h_gradient
# Apply blending
alpha_3ch = alpha[:, :, np.newaxis]
mosaic_region = result[y_offset:y_end, x_offset:x_end].astype(np.float32)
frame_region = frame[:frame_y_end, :frame_x_end].astype(np.float32)
blended = (mosaic_region * (1 - alpha_3ch) + frame_region * alpha_3ch).astype(np.uint8)
result[y_offset:y_end, x_offset:x_end] = blended
self.mosaic = result
# Update position tracking OUTSIDE the mosaic lock
with self._state_lock:
if direction == ScanDirection.LEFT:
# For LEFT scanning: current_x is LEFT edge of where we are
# Start at right side, will decrease as we move left
self.state.current_x = x_offset
else:
# For RIGHT scanning: current_x is RIGHT edge of mosaic
self.state.current_x = 0
self.state.current_y = y_offset
self.state.append_count += 1
self.log(f" First strip placed. current_x={self.state.current_x}, current_y={self.state.current_y}")
# Reset displacement tracking for subsequent strips
self._displacement_since_append_x = 0.0
self._displacement_since_append_y = 0.0
self._prev_frame = frame.copy()
if self.on_mosaic_updated:
self.on_mosaic_updated()
def _append_strip(self, frame: np.ndarray, direction: ScanDirection):
"""Append strip to mosaic based on accumulated displacement."""
"""Append strip to mosaic based on accumulated displacement with continuous alignment."""
BLEND_WIDTH = 10
SAFETY_MARGIN = 2
@ -815,6 +742,23 @@ class StitchingScanner:
dx = abs(self._displacement_since_append_x)
dy = abs(self._displacement_since_append_y)
# Calculate expected position for alignment detection
expected_x = int(self.state.current_x + self._cumulative_align_x)
expected_y = int(self.state.current_y + self._cumulative_align_y)
# Detect alignment for this strip
alignment = self._detect_strip_alignment(frame, direction, expected_x, expected_y)
if alignment.valid:
# Update cumulative alignment
self._cumulative_align_x += alignment.x_offset
self._cumulative_align_y += alignment.y_offset
self._last_strip_alignment = alignment
# Get total alignment offsets
align_x = self._cumulative_align_x
align_y = self._cumulative_align_y
if direction in [ScanDirection.RIGHT, ScanDirection.LEFT]:
append_width = round(dx) + SAFETY_MARGIN
append_width = min(append_width, w - BLEND_WIDTH - 5)
@ -825,72 +769,54 @@ class StitchingScanner:
pixels_consumed = append_width - SAFETY_MARGIN
fractional_remainder = dx - pixels_consumed
# Calculate Y offset for current row
y_offset = int(self.state.current_y)
y_offset = max(0, min(y_offset, mh - h))
if direction == ScanDirection.RIGHT:
# Expanding to the right
strip_start = max(0, w - append_width - BLEND_WIDTH)
new_strip = frame[:, strip_start:]
self.log(f"RIGHT append: strip from col {strip_start}, width {new_strip.shape[1]}")
self.mosaic = self._blend_horizontal_at_y(
self.mosaic, new_strip, BLEND_WIDTH, append_right=True,
y_offset=y_offset)
else: # LEFT - placing within existing mosaic
# current_x is where the LEFT edge of current view is
# We're moving left, so new content is on the LEFT of the frame
# We want to place the LEFT portion of the frame
x_offset=int(self.state.current_x), y_offset=y_offset,
alignment_x=align_x, alignment_y=align_y)
else:
strip_end = min(w, append_width + BLEND_WIDTH)
new_strip = frame[:, :strip_end]
# Calculate where to place this strip
# current_x is decreasing as we move left
# The strip goes at current_x - append_width
new_x = int(self.state.current_x) - append_width
new_x = max(0, new_x)
self.log(f"LEFT append: current_x={self.state.current_x}, new_x={new_x}, strip width={new_strip.shape[1]}")
# Blend into existing mosaic
result = self.mosaic.copy()
strip_h, strip_w = new_strip.shape[:2]
x_end = min(new_x + strip_w, mw)
y_end = min(y_offset + strip_h, mh)
actual_w = x_end - new_x
actual_h = y_end - y_offset
if actual_w > BLEND_WIDTH and actual_h > 0:
# Create horizontal blend on RIGHT side (blending with existing content)
alpha = np.ones((actual_h, actual_w), dtype=np.float32)
blend_w = min(BLEND_WIDTH, actual_w // 2)
if blend_w > 0:
h_gradient = np.linspace(1, 0, blend_w, dtype=np.float32)[np.newaxis, :]
alpha[:, -blend_w:] = h_gradient
alpha_3ch = alpha[:, :, np.newaxis]
mosaic_region = result[y_offset:y_end, new_x:x_end].astype(np.float32)
frame_region = new_strip[:actual_h, :actual_w].astype(np.float32)
blended = (mosaic_region * (1 - alpha_3ch) + frame_region * alpha_3ch).astype(np.uint8)
result[y_offset:y_end, new_x:x_end] = blended
self.mosaic = result
# Update current_x to new position (moving left)
with self._state_lock:
self.state.current_x = new_x
self.mosaic = self._blend_horizontal_at_y(
self.mosaic, new_strip, BLEND_WIDTH, append_right=False,
x_offset=int(self.state.current_x), y_offset=y_offset,
alignment_x=align_x, alignment_y=align_y)
self._displacement_since_append_x = fractional_remainder
self._displacement_since_append_y = 0.0
elif direction in [ScanDirection.DOWN, ScanDirection.UP]:
# ... keep existing vertical logic ...
pass
append_height = round(dy) + SAFETY_MARGIN
append_height = min(append_height, h - BLEND_WIDTH - 5)
if append_height < 1:
return
pixels_consumed = append_height - SAFETY_MARGIN
fractional_remainder = dy - pixels_consumed
if direction == ScanDirection.DOWN:
strip_end = min(h, append_height + BLEND_WIDTH)
new_strip = frame[:strip_end, :]
self.mosaic = self._blend_vertical_at_x(
self.mosaic, new_strip, BLEND_WIDTH, append_below=False,
x_off=int(self.state.current_x),
alignment_x=align_x, alignment_y=align_y)
else:
strip_start = max(0, h - append_height - BLEND_WIDTH)
new_strip = frame[strip_start:, :]
self.mosaic = self._blend_vertical_at_x(
self.mosaic, new_strip, BLEND_WIDTH, append_below=True,
x_off=int(self.state.current_x),
alignment_x=align_x, alignment_y=align_y)
self._displacement_since_append_x = 0.0
self._displacement_since_append_y = fractional_remainder
new_mh, new_mw = self.mosaic.shape[:2]
@ -901,6 +827,7 @@ class StitchingScanner:
if self.on_mosaic_updated:
self.on_mosaic_updated()
# =========================================================================
# Scan Control
# =========================================================================
@ -983,15 +910,16 @@ class StitchingScanner:
# Serpentine: even rows right, odd rows left
h_direction = ScanDirection.RIGHT if row % 2 == 0 else ScanDirection.LEFT
# For rows after the first, detect and apply row-start alignment with large overlap
# For rows > 0, detect alignment against both edges before scanning
if row > 0:
frame = self._capture_frame()
row_alignment = self._detect_row_start_alignment(frame, h_direction)
# Append the first strip with the detected alignment
self._append_first_strip_of_row(frame, h_direction, row_alignment)
self.log(f"After first strip - cumulative: X={self._cumulative_align_x:.1f}, Y={self._cumulative_align_y:.1f}")
if row_alignment.valid:
self.log(f"Applying row-start alignment: X={row_alignment.x_offset:.1f}, Y={row_alignment.y_offset:.1f}")
self._cumulative_align_x += row_alignment.x_offset
self._cumulative_align_y += row_alignment.y_offset
self.log(f"New cumulative alignment: X={self._cumulative_align_x:.1f}, Y={self._cumulative_align_y:.1f}")
stop_reason = self._scan_direction(h_direction)
@ -1003,7 +931,7 @@ class StitchingScanner:
self.log(f"Max height reached ({self.state.mosaic_height}px)")
break
# Move to next row
# Move to next row using same stitching approach
if not self._move_to_next_row():
self.log("Failed to move to next row")
break
@ -1032,27 +960,22 @@ class StitchingScanner:
frame = self._capture_frame()
h, w = frame.shape[:2]
total_x = 0
# Setup based on direction
if direction in [ScanDirection.RIGHT, ScanDirection.LEFT]:
threshold_pixels = w * self.config.displacement_threshold
max_dim = self.config.max_mosaic_width
current_dim = lambda: self.state.mosaic_width
start_cmd = 'E' if direction == ScanDirection.RIGHT else 'W'
stop_cmd = 'e' if direction == ScanDirection.RIGHT else 'w'
else:
threshold_pixels = h * self.config.displacement_threshold
max_dim = self.config.max_mosaic_height
current_dim = lambda: self.state.mosaic_height
start_cmd = 'S' if direction == ScanDirection.DOWN else 'N'
stop_cmd = 's' if direction == ScanDirection.DOWN else 'n'
# Track starting position and target for LEFT direction
if direction == ScanDirection.LEFT:
start_x = self.state.current_x
target_x = 0 # We want to reach the left edge
self.log(f"LEFT scan: starting at x={start_x}, target x={target_x}")
elif direction == ScanDirection.RIGHT:
start_x = self.state.current_x
target_x = self.config.max_mosaic_width
self.log(f"RIGHT scan: starting at x={start_x}, target x={target_x}")
self._prev_frame = frame.copy()
self._displacement_since_append_x = 0.0
self._displacement_since_append_y = 0.0
@ -1061,26 +984,29 @@ class StitchingScanner:
no_movement_count = 0
max_no_movement = 50
stop_reason = 'stopped'
self.log(f"Scanning 2..")
while self.running and not self.paused:
if time.time() - start_time > self.config.max_scan_time:
self.log("Scan timeout")
stop_reason = 'timeout'
break
# Check exit conditions
if direction == ScanDirection.RIGHT:
if self.state.mosaic_width >= self.config.max_mosaic_width:
self.log(f"Max width reached ({self.state.mosaic_width}px)")
stop_reason = 'max_dim'
break
if current_dim() >= max_dim and direction == ScanDirection.RIGHT:
self.log(f"Max dimension reached ({current_dim()}px)")
stop_reason = 'max_dim'
break
elif direction == ScanDirection.LEFT:
# Stop when we reach the left edge
if self.state.current_x <= 0:
self.log(f"Reached left edge (current_x={self.state.current_x})")
stop_reason = 'complete'
break
if self.state.current_x >= 0 and direction == ScanDirection.LEFT:
self.log(f"Returned to start ({self.config.max_mosaic_width}px)")
self.log(f"Current X offset ({self.state.current_x}px) total_x ({total_x}px)")
stop_reason = 'max_dim'
break
if abs(self.state.current_x) >= self.config.max_mosaic_width and direction == ScanDirection.RIGHT:
self.log(f"Max dimension reached ({self.config.max_mosaic_width}px)")
self.log(f"Current X offset ({self.state.current_x}px)")
stop_reason = 'max_dim'
break
# Pulse motor
self.motion.send_command(start_cmd)
@ -1092,19 +1018,12 @@ class StitchingScanner:
curr_frame = self._capture_frame()
dx, dy = self._detect_displacement_robust(self._prev_frame, curr_frame)
# Accumulate displacement magnitude
self._displacement_since_append_x += abs(dx)
self.log(f"Scanning dx{dx} dy{dy}..")
self._displacement_since_append_x += dx
self._displacement_since_append_y += dy
# For LEFT direction, current_x DECREASES
# Phase correlation: when camera moves LEFT, content shifts RIGHT, dx > 0
# So for LEFT scanning, we subtract dx from current_x
if direction == ScanDirection.LEFT:
with self._state_lock:
self.state.current_x -= abs(dx) # Decrease as we go left
elif direction == ScanDirection.RIGHT:
with self._state_lock:
self.state.current_x += abs(dx) # Increase as we go right
total_x += dx
with self._state_lock:
self.state.current_x += dx
with self._state_lock:
self.state.cumulative_x = self._displacement_since_append_x
@ -1115,6 +1034,7 @@ class StitchingScanner:
# Edge detection
movement = abs(dx) if direction in [ScanDirection.RIGHT, ScanDirection.LEFT] else abs(dy)
self.log(f"Scanning movement{movement}..")
if movement < 1.0:
no_movement_count += 1
if no_movement_count >= max_no_movement:
@ -1124,12 +1044,14 @@ class StitchingScanner:
else:
no_movement_count = 0
# Append when threshold reached
disp = self._displacement_since_append_x if direction in [ScanDirection.RIGHT, ScanDirection.LEFT] else abs(self._displacement_since_append_y)
# Append when threshold reached (with continuous alignment)
disp = abs(self._displacement_since_append_x) if direction in [ScanDirection.RIGHT, ScanDirection.LEFT] else abs(self._displacement_since_append_y)
self.log(f"Scanning disp{disp}..")
if disp >= threshold_pixels:
self.log(f"Scanning threshold_pixels..")
self._append_strip(curr_frame, direction)
self.log(f"Appended, current_x={self.state.current_x:.0f}, mosaic: {self.state.mosaic_width}x{self.state.mosaic_height}")
self.log(f"Appended {disp:.1f}px, mosaic: {self.state.mosaic_width}x{self.state.mosaic_height}, align: ({self._cumulative_align_x:.1f}, {self._cumulative_align_y:.1f})")
self._prev_frame = curr_frame.copy()
@ -1138,7 +1060,7 @@ class StitchingScanner:
self.motion.send_command(stop_cmd)
time.sleep(self.config.settle_time)
self.log(f"Direction finished: {stop_reason}, final current_x={self.state.current_x}")
self.log(f"Direction finished: {stop_reason}")
return stop_reason
def _move_to_next_row(self) -> bool:
@ -1322,6 +1244,42 @@ class StitchingScanner:
return results
def test_row_start_alignment(self, direction: str = 'left') -> dict:
"""Test row-start alignment detection."""
results = {
'success': False,
'x_offset': 0.0,
'y_offset': 0.0,
'confidence': 0.0,
'error': None
}
try:
self.log("Testing row-start alignment detection...")
if self.mosaic is None:
self.log("No mosaic - initializing...")
frame = self._capture_frame()
self._init_mosaic(frame)
frame = self._capture_frame()
scan_dir = ScanDirection.LEFT if direction == 'left' else ScanDirection.RIGHT
alignment = self._detect_row_start_alignment(frame, scan_dir)
results['success'] = alignment.valid
results['x_offset'] = alignment.x_offset
results['y_offset'] = alignment.y_offset
results['confidence'] = alignment.confidence
self.log(f"Row-start alignment: valid={alignment.valid}, X={alignment.x_offset:.1f}, Y={alignment.y_offset:.1f}, conf={alignment.confidence:.3f}")
except Exception as e:
results['error'] = str(e)
self.log(f"Test error: {e}")
return results
def test_row_transition(self) -> dict:
"""Test row transition using displacement stitching."""
results = {