relative horizontal blend

This commit is contained in:
2ManyProjects 2026-01-09 19:34:51 -06:00
parent 86d9b817e5
commit 5937d5fb68

View file

@ -154,179 +154,119 @@ class StitchingScanner:
self.state.mosaic_init_height = h
self.state.frame_count = 1
self.state.append_count = 0
self.state.current_y = 0
self.state.current_x = 0
self.log(f"Initialized mosaic: {frame.shape[1]}x{frame.shape[0]}")
def _blend_horizontal(self, base: np.ndarray, strip: np.ndarray,
blend_width: int, append_right: bool) -> np.ndarray:
self.log(f"=== _blend_horizontal ===")
self.log(f" base.shape: {base.shape}, strip.shape: {strip.shape}")
self.log(f" blend_width: {blend_width}, append_right: {append_right}")
def _blend_horizontal_at_y(self, base: np.ndarray, strip: np.ndarray,
blend_width: int, append_right: bool,
y_offset: int = 0) -> np.ndarray:
"""Blend strip horizontally at a specific Y position in the mosaic."""
h_base, w_base = base.shape[:2]
h_strip, w_strip = strip.shape[:2]
# Clamp y_offset to valid range
y_offset = max(0, min(y_offset, h_base - h_strip))
# Early exit: no blending possible
if blend_width <= 0 or blend_width >= w_strip:
if append_right:
# Create result with expanded width
result_width = w_base + w_strip
result = np.zeros((h_base, result_width, 3), dtype=np.uint8)
result[:, :w_base] = base
result[y_offset:y_offset + h_strip, w_base:] = strip
return result
else:
result_width = w_base + w_strip
result = np.zeros((h_base, result_width, 3), dtype=np.uint8)
result[y_offset:y_offset + h_strip, :w_strip] = strip
result[:, w_strip:] = base
return result
blend_w = min(blend_width, w_strip, w_base)
if append_right:
result_width = w_base + w_strip - blend_w
result = np.zeros((h_base, result_width, 3), dtype=np.uint8)
result[:, :w_base] = base
# Extract overlaps at the correct Y position
alpha = np.linspace(1, 0, blend_w, dtype=np.float32)[np.newaxis, :, np.newaxis]
base_overlap = base[y_offset:y_offset + h_strip, -blend_w:].astype(np.float32)
strip_overlap = strip[:, :blend_w].astype(np.float32)
blended = (base_overlap * alpha + strip_overlap * (1 - alpha)).astype(np.uint8)
# Place blended region and remainder at correct Y
result[y_offset:y_offset + h_strip, w_base - blend_w:w_base] = blended
result[y_offset:y_offset + h_strip, w_base:] = strip[:, blend_w:]
return result
else: # append_left
result_width = w_base + w_strip - blend_w
result = np.zeros((h_base, result_width, 3), dtype=np.uint8)
# Place strip at correct Y position
result[y_offset:y_offset + h_strip, :w_strip] = strip
# Copy base (shifted right)
result[:, w_strip:] = base[:, blend_w:]
# Extract overlaps at correct Y position
alpha = np.linspace(0, 1, blend_w, dtype=np.float32)[np.newaxis, :, np.newaxis]
strip_overlap = strip[:, -blend_w:].astype(np.float32)
base_overlap = base[y_offset:y_offset + h_strip, :blend_w].astype(np.float32)
blended = (strip_overlap * (1 - alpha) + base_overlap * alpha).astype(np.uint8)
result[y_offset:y_offset + h_strip, w_strip - blend_w:w_strip] = blended
return result
def _blend_horizontal(self, base: np.ndarray, strip: np.ndarray,
blend_width: int, append_right: bool) -> np.ndarray:
if blend_width <= 0 or blend_width >= strip.shape[1]:
self.log(f" Early exit: blend_width out of range")
if append_right:
return np.hstack([base, strip])
return np.hstack([strip, base])
h_base, w_base = base.shape[:2]
h_strip, w_strip = strip.shape[:2]
# Check for channel dimension
c_base = base.shape[2] if len(base.shape) > 2 else 1
c_strip = strip.shape[2] if len(strip.shape) > 2 else 1
self.log(f" h_base: {h_base}, w_base: {w_base}, channels_base: {c_base}")
self.log(f" h_strip: {h_strip}, w_strip: {w_strip}, channels_strip: {c_strip}")
self.log(f"Base Width: {w_base}px")
if h_strip != h_base:
self.log(f" WARNING: Height mismatch! h_base={h_base}, h_strip={h_strip}")
if append_right:
return np.hstack([base, strip])
return np.hstack([strip, base])
if c_base != c_strip:
self.log(f" ERROR: Channel mismatch! c_base={c_base}, c_strip={c_strip}")
blend_w = min(blend_width, w_strip, w_base)
self.log(f" blend_w (clamped): {blend_w}")
if append_right:
result_width = w_base + w_strip - blend_w
self.log(f" result_width: {result_width} = {w_base} + {w_strip} - {blend_w}")
result = np.zeros((h_base, result_width, 3), dtype=np.uint8)
self.log(f" result.shape: {result.shape}")
# Step 1: Copy base
self.log(f" Step 1: result[:, :w_base] = base -> result[:, :{w_base}]")
try:
result[:, :w_base] = base
except Exception as e:
self.log(f" ERROR Step 1: {e}")
raise
# Step 2: Create alpha and overlaps
self.log(f" Step 2: Creating overlaps")
self.log(f" base_overlap = base[:, -{blend_w}:] -> base[:, {w_base - blend_w}:]")
self.log(f" strip_overlap = strip[:, :{blend_w}]")
result[:, :w_base] = base
alpha = np.linspace(1, 0, blend_w, dtype=np.float32)[np.newaxis, :, np.newaxis]
self.log(f" alpha.shape: {alpha.shape}")
base_overlap = base[:, -blend_w:].astype(np.float32)
strip_overlap = strip[:, :blend_w].astype(np.float32)
blended = (base_overlap * alpha + strip_overlap * (1 - alpha)).astype(np.uint8)
try:
base_overlap = base[:, -blend_w:].astype(np.float32)
self.log(f" base_overlap.shape: {base_overlap.shape}")
except Exception as e:
self.log(f" ERROR base_overlap: {e}")
raise
try:
strip_overlap = strip[:, :blend_w].astype(np.float32)
self.log(f" strip_overlap.shape: {strip_overlap.shape}")
except Exception as e:
self.log(f" ERROR strip_overlap: {e}")
raise
# Step 3: Blend
self.log(f" Step 3: Blending")
try:
blended = (base_overlap * alpha + strip_overlap * (1 - alpha)).astype(np.uint8)
self.log(f" blended.shape: {blended.shape}")
except Exception as e:
self.log(f" ERROR blending: {e}")
raise
# Step 4: Assign blended region
self.log(f" Step 4: result[:, {w_base - blend_w}:{w_base}] = blended")
try:
result[:, w_base - blend_w:w_base] = blended
except Exception as e:
self.log(f" ERROR Step 4: {e}")
self.log(f" Slice size: [:, {w_base - blend_w}:{w_base}] = {w_base - (w_base - blend_w)} cols")
self.log(f" blended.shape: {blended.shape}")
raise
# Step 5: Assign remainder of strip
self.log(f" Step 5: result[:, {w_base}:] = strip[:, {blend_w}:]")
try:
remainder = strip[:, blend_w:]
self.log(f" remainder.shape: {remainder.shape}")
self.log(f" target slice width: {result_width - w_base}")
result[:, w_base:] = remainder
except Exception as e:
self.log(f" ERROR Step 5: {e}")
raise
self.log(f" Success! Returning result.shape: {result.shape}")
result[:, w_base - blend_w:w_base] = blended
result[:, w_base:] = strip[:, blend_w:]
return result
else: # append_left
else:
result_width = w_base + w_strip - blend_w
self.log(f" result_width: {result_width} = {w_base} + {w_strip} - {blend_w}")
result = np.zeros((h_base, result_width, 3), dtype=np.uint8)
self.log(f" result.shape: {result.shape}")
# Step 1: Copy strip
self.log(f" Step 1: result[:, :w_strip] = strip -> result[:, :{w_strip}]")
try:
result[:, :w_strip] = strip
except Exception as e:
self.log(f" ERROR Step 1: {e}")
raise
# Step 2: Create alpha and overlaps
self.log(f" Step 2: Creating overlaps")
self.log(f" strip_overlap = strip[:, -{blend_w}:] -> strip[:, {w_strip - blend_w}:]")
self.log(f" base_overlap = base[:, :{blend_w}]")
result[:, :w_strip] = strip
alpha = np.linspace(0, 1, blend_w, dtype=np.float32)[np.newaxis, :, np.newaxis]
self.log(f" alpha.shape: {alpha.shape}")
strip_overlap = strip[:, -blend_w:].astype(np.float32)
base_overlap = base[:, :blend_w].astype(np.float32)
blended = (strip_overlap * (1 - alpha) + base_overlap * alpha).astype(np.uint8)
try:
strip_overlap = strip[:, -blend_w:].astype(np.float32)
self.log(f" strip_overlap.shape: {strip_overlap.shape}")
except Exception as e:
self.log(f" ERROR strip_overlap: {e}")
raise
try:
base_overlap = base[:, :blend_w].astype(np.float32)
self.log(f" base_overlap.shape: {base_overlap.shape}")
except Exception as e:
self.log(f" ERROR base_overlap: {e}")
raise
# Step 3: Blend
self.log(f" Step 3: Blending")
try:
blended = (strip_overlap * (1 - alpha) + base_overlap * alpha).astype(np.uint8)
self.log(f" blended.shape: {blended.shape}")
except Exception as e:
self.log(f" ERROR blending: {e}")
raise
# Step 4: Assign blended region
self.log(f" Step 4: result[:, {w_strip - blend_w}:{w_strip}] = blended")
try:
result[:, w_strip - blend_w:w_strip] = blended
except Exception as e:
self.log(f" ERROR Step 4: {e}")
raise
# Step 5: Assign remainder of base
self.log(f" Step 5: result[:, {w_strip}:] = base[:, {blend_w}:]")
try:
remainder = base[:, blend_w:]
self.log(f" remainder.shape: {remainder.shape}")
self.log(f" target slice width: {result_width - w_strip}")
result[:, w_strip:] = remainder
except Exception as e:
self.log(f" ERROR Step 5: {e}")
raise
self.log(f" Success! Returning result.shape: {result.shape}")
result[:, w_strip - blend_w:w_strip] = blended
result[:, w_strip:] = base[:, blend_w:]
return result
def _blend_vertical_at_x(self, base: np.ndarray, strip: np.ndarray,
blend_height: int, append_below: bool,
x_off: int = 0) -> np.ndarray:
@ -449,16 +389,19 @@ class StitchingScanner:
pixels_consumed = append_width - SAFETY_MARGIN
fractional_remainder = dx - pixels_consumed
# Calculate Y offset for current row
y_offset = int(self.state.current_y)
if direction == ScanDirection.RIGHT:
strip_start = max(0, w - append_width - BLEND_WIDTH)
new_strip = frame[:, strip_start:]
self.mosaic = self._blend_horizontal(
self.mosaic, new_strip, BLEND_WIDTH, append_right=True)
self.mosaic = self._blend_horizontal_at_y(
self.mosaic, new_strip, BLEND_WIDTH, append_right=True, y_offset=y_offset)
else:
strip_end = min(w, append_width + BLEND_WIDTH)
new_strip = frame[:, :strip_end]
self.mosaic = self._blend_horizontal(
self.mosaic, new_strip, BLEND_WIDTH, append_right=False)
self.mosaic = self._blend_horizontal_at_y(
self.mosaic, new_strip, BLEND_WIDTH, append_right=False, y_offset=y_offset)
self._displacement_since_append_x = fractional_remainder
self._displacement_since_append_y = 0.0
@ -777,6 +720,7 @@ class StitchingScanner:
# Done when we've moved enough
if abs(total_y) >= target_displacement:
self.log(f"Row transition complete: {abs(total_y):.1f}px")
self.state.current_y = 0
self.motion.send_command('s')
time.sleep(self.config.settle_time)